The Local Limit Theorem for the Galton-Watson Process

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Large Deviations, McMillian Theorem for multitype Galton-Watson Processes

Abstract. In this article we prove a local large deviation principle (LLDP) for the critical multitype Galton-Watson process from spectral potential point. We define the so-called a spectral potential UK( ·, π) for the Galton-Watson process, where π is the normalized eigen vector corresponding to the leading Perron-Frobenius eigen value 1l of the transition matrix A(·, ·) defined from K, the tr...

متن کامل

Parallel Galton Watson Process

In this paper, we study a parallel version of GaltonWatson processes for the random generation of tree-shaped structures. Random trees are useful in many situations (testing, binary search, simulation of physics phenomena,...) as attests more than 49000 citations on Google scholar. Using standard analytic combinatorics, we first give a theoretical, averagecase study of the random process in ord...

متن کامل

The Local Limit Theorem: A Historical Perspective

The local limit theorem describes how the density of a sum of random variables follows the normal curve. However the local limit theorem is often seen as a curiosity of no particular importance when compared with the central limit theorem. Nevertheless the local limit theorem came first and is in fact associated with the foundation of probability theory by Blaise Pascal and Pierre de Fer...

متن کامل

Galton-watson Trees with Vanishing Martingale Limit

We show that an infinite Galton-Watson tree, conditioned on its martingale limit being smaller than ε, agrees up to generation K with a regular μ-ary tree, where μ is the essential minimum of the offspring distribution and the random variable K is strongly concentrated near an explicit deterministic function growing like a multiple of log(1/ε). More precisely, we show that if μ ≥ 2 then with hi...

متن کامل

Convergence Rate of the Limit Theorem of a Galton-watson Tree with Neutral Mutations

We consider a Galton-Watson branching process with neutral mutations (infinite alleles model), and we decompose the entire population into sub-families of individuals carrying the same allele. Bertoin[3] has established the description of the asymptotic shape of the process of the sizes of the allelic sub-families when the initial population is large and the mutation rate small. The limit in la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1976

ISSN: 0091-1798

DOI: 10.1214/aop/1176996100